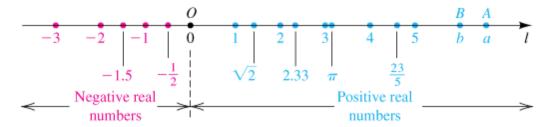
2: Representing Numbers as Points on a Number Line

Thinking of numbers as points along a number line can help us understand arithmetic properties that involve zero, negative numbers, inequalities, and distances. Here's the real number line:



- We go from negative numbers on the left to positive numbers on the right, with 0 in between.
- We can place points to represent integers, such as -3 and 3, rational numbers, such as -1/2 and 1/3, and irrational numbers, such as $\sqrt{2}$ and π .
- The points labeled A and B have associated numbers a and b that represent coordinates.

Sign rules

- Consider multiplying two numbers, a x b. If a and b have the same sign, then the product ab is positive. If a and b have opposite signs, then ab is negative.
- Similarly, if we divide two numbers, $a \div b$. If a and b have the same sign, then the quotient a/b is positive. If a and b have opposite signs, then a/b is negative.

Properties of negatives

- If we multiply a number a by -1 we get -a: (-1)a = -a. For example, (-1)(3) = -3.
- If we take the negative of a negative number, we get the original number again: -(-a) = a. For example, -(-3) = 3.
- If we multiply -a by b or a by -b we get the same answer: (-a)b = a(-b) = -(ab). For example, (-3)4 = 3(-4) = -(3x4) = -12.
- But if we multiply -a by -b we get (-a)(-b) = ab. For example, (-3)(-4) = 12.

Properties of zero

- If we multiply a number a by 0 we get 0: $a \times 0 = 0$. For example, $3 \times 0 = 0$.
- If ab = 0 then a = 0 or b = 0 (or both a = b = 0). This is called the zero-factor theorem, and it comes up a lot when solving equations.

Connection between subtraction and addition

• One way to subtract b from a is to add -b to a: a - b = a + (-b). For example, 3 - 4 = 3 + (-4) = -1 and 3 - (-4) = 3 + 4 = 7.

Inequalities

- First, strict inequalities: a > b if a b is positive and a < b if a b is negative. For example, 3 < 4 because 3 4 = -1 and 3 > -4 because 3 (-4) = 7.
- If we have two numbers a and b, either a > b, a < b, or a = b.

• Next, nonstrict inequalities: $a \ge b$ if a > b or a = b and $a \le b$ if a < b or a = b.

Absolute values

- $|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$. For example, |3| = 3 and |-4| = 4. Think of the absolute value as representing the magnitude of a number without regard to its sign.
- This leads to the notion of the distance between two numbers: d(a,b) = |b-a| = |a-b|. For example, d(3,4) = |3-4| = |-1| = 1, d(3,-4) = |3-(-4)| = |7| = 7.