8: Understanding Rational Exponents

Roots and radical expressions

If we raise a real number, a, to the power 1/n, where n is a positive integer greater than 1, we obtain the *principal n-th root* of a: $a^{1/n} = \sqrt[n]{a}$. An expression containing such a root is called a radical expression.

- If a > 0, then $\sqrt[n]{a}$ is the positive real number b such that $b^n = a$. For example, $\sqrt[3]{8} = 2$ because $2^3 = 8$ and $\sqrt[2]{16} = \sqrt{16} = 4$ because $4^2 = 16$. Note that -4 is also a square root of 16 because $(-4)^2 = 16$, but it is not the principal square root.
- If a < 0 and n is odd, then $\sqrt[n]{a}$ is the negative real number b such that $b^n = a$. For example, $\sqrt[3]{-8} = -2$ because $(-2)^3 = -8$.
- If a < 0 and n is even, then $\sqrt[n]{a}$ is not a real number. For example, $\sqrt[2]{-16}$ is not a real number because there is no real number that we can square to equal –16.
- If a = 0, then $\sqrt[n]{a} = 0$.

More examples

- $\sqrt[3]{27} = 3$ because $3^3 = 27$.
- $\sqrt{36} = 6$ because $6^2 = 36$ (and -6 is also a square root of 36).
- $\sqrt[5]{-32} = -2$ because $(-2)^5 = -32$.
- $\sqrt[4]{\frac{1}{81}} = \frac{1}{3}$ because $\left(\frac{1}{3}\right)^4 = \frac{1}{3^4} = \frac{1}{81}$ (and $-\frac{1}{3}$ is also a fourth root of $\frac{1}{81}$).

Why it makes sense to define roots this way

It makes sense because $(a^{1/n})^n = {\binom{n}{\sqrt{a}}}^n = a$. For example, $(\sqrt[3]{8})^3 = 2^3 = 8$.

More general rational exponents

If we raise a real number, a, to the power m/n, where m is an integer and n is a positive integer greater than 1, we obtain the principal n-th root of a raised to the power m (in either order): $a^{m/n} = \binom{n}{\sqrt{a}}^m = \sqrt[n]{a^m}$. For example, $8^{2/3} = \binom{\sqrt[3]{8}}{2}^2 = 2^2 = 4$ or $8^{2/3} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$.

More examples

•
$$4^{3/2} = (\sqrt{4})^3 = 2^3 = 8 \text{ or } 4^{3/2} = \sqrt{4^3} = \sqrt{64} = 8.$$

•
$$(-8)^{2/3} = (\sqrt[3]{-8})^2 = (-2)^2 = 4 \text{ or } (-8)^{2/3} = \sqrt[3]{(-8)^2} = \sqrt[3]{64} = 4.$$

•
$$81^{-3/4} = \frac{1}{81^{3/4}} = \frac{1}{(\sqrt[4]{81})^3} = \frac{1}{3^3} = \frac{1}{27}$$
. (The other way is harder.)

•
$$\left(\frac{9}{16}\right)^{3/2} = \frac{9^{3/2}}{16^{3/2}} = \frac{\sqrt{9}^3}{\sqrt{16}^3} = \frac{3^3}{4^3} = \frac{27}{64}$$
. (The other way is harder.)

More complicated expressions with variables

Simplify the following expressions, ensuring that all exponents are positive:

•
$$(9x^2y^4)^{3/2} = (\sqrt{9x^2y^4})^3 = (3xy^2)^3 = 27x^3y^6$$
.

•
$$(2x^{3/4}y^{1/2})^8 = 2^8 \cdot (x^{3/4})^8 \cdot (y^{1/2})^8 = 256x^6y^4$$
.

•
$$\left(\frac{1}{64}x^3y^{-6}\right)^{1/3} = \left(\frac{1}{64}\right)^{1/3} \cdot (x^3)^{1/3} \cdot (y^{-6})^{1/3} = \frac{x}{4y^2}$$

•
$$(16x^{1/2}y^{-2})^{3/4} = 16^{3/4} \cdot (x^{1/2})^{3/4} \cdot (y^{-2})^{3/4} = \frac{8x^{3/8}}{y^{3/2}}$$
.

$$\bullet \quad \left(\frac{x^{-4}y^2}{49}\right)^{-1/2} = \left(\frac{49}{x^{-4}y^2}\right)^{1/2} = 49^{1/2} \cdot \left(\frac{1}{x^{-4}}\right)^{1/2} \cdot \left(\frac{1}{y^2}\right)^{1/2} = \frac{7x^2}{y}.$$

Rationalizing the denominator

Sometimes, we want any radical expressions to only be in the numerator. We can do this by rationalizing the denominator by multiplying by the appropriate fraction equivalent to 1. For example:

$$\bullet \quad \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

$$\bullet \quad \frac{1}{\sqrt[3]{2}} = \frac{1}{\sqrt[3]{2}} \cdot \frac{\sqrt[3]{2^2}}{\sqrt[3]{2^2}} = \frac{\sqrt[3]{2^2}}{2} = \frac{\sqrt[3]{4}}{2}.$$

•
$$\left(\frac{x}{2y}\right)^{1/3} = \frac{x^{1/3}}{(2y)^{1/3}} \cdot \frac{(2y)^{2/3}}{(2y)^{2/3}} = \frac{(4xy^2)^{1/3}}{2y} = \frac{\sqrt[3]{4xy^2}}{2y}.$$