9: Adding and Subtracting Polynomials

Definition and terminology of polynomials

The algebraic expression, $a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$, represents a *polynomial* of degree n in the variable x. Here n is a non-negative integer.

- The a's, called coefficients, are real number constants with leading coefficient $a_n \neq 0$.
- Each product of a coefficient and a power of x is called a *term* with *leading term* $a_n x^n$ and constant term a_0 .

For example, $2x^3 - 4x^2 + 1$:

- Degree 3.
- Leading term $2x^3$ with leading coefficient 2.
- Coefficient of x^2 is -4.
- Coefficient of x is 0.
- Constant term is 1.

Adding and subtracting polynomials

To add and subtract polynomials, we must compare terms with the same power of the variable. For example, to add $2x^3 - 4x^2 + 1$ and $3x^3 + 5x^2 + 2x - 4$:

- Add $2x^3$ and $3x^3$ to get $(2+3)x^3 = 5x^3$.
- Add $-4x^2$ and $5x^2$ to get $(-4+5)x^2 = x^2$.
- Add 0x and 2x to get (0 + 2)x = 2x.
- Add 1 and -4 to get 1 + (-4) = -3.
- The final answer is therefore $5x^3 + x^2 + 2x 3$.

Similarly,
$$(2x^3 - 4x^2 + 1) - (3x^3 + 5x^2 + 2x - 4) = -x^3 - 9x^2 - 2x + 5$$
.

Multiplying a polynomial by a constant

Think of multiplying a polynomial by a constant as repeated addition or subtraction. For example:

- $2(2x^3 4x^2 + 1) = (2x^3 4x^2 + 1) + (2x^3 4x^2 + 1) = 4x^3 8x^2 + 2$.
- $-3(2x^3 4x^2 + 1) = -6x^3 + 12x^2 3$.

More examples

- $(-2x^3 5x + 4) + (3x^2 + 2x 4) = -2x^3 + 3x^2 3x$.
- $(2x^2 + 3x 2) 2(-3x^3 x^2 + 1) = 6x^3 + 4x^2 + 3x 4$.
- $2(x^3 3x^2 + 4) 3(-2x^2 x + 3) = 2x^3 + 3x 1$.

Adding and subtracting polynomials with two variables

- $2(3x^2 + xy + 2y + 1) (x^2 2y^2 + 3x 4y) = 5x^2 + 2y^2 + 2xy 3x + 8y + 2$.
- $(x^2 + 3xy + 4x y) + 2(4y^2 3xy 2x + 2) = x^2 + 8y^2 3xy y + 4$.